Integrin-linked kinase at the heart of cardiac contractility, repair, and disease.
نویسندگان
چکیده
Recent advances in cardiac physiology identify the integrin-linked kinase (ILK) as an essential molecule regulating cardiac growth, contractility, and repair. A key transducer of biochemical signals initiated at the plasma membrane by cell-matrix interactions, ILK now emerges as a crucial player in mechanotransduction by integrins. Animal models have been particularly instructive in dissecting the cardiac functions of ILK and its associated proteins, such as parvins and PINCH, and have clearly established ILK as a major contributor to cardiac health. ILK gene knockouts in mice, flies, and worms result in early embryonic lethality because of cell adhesion defects and cytoskeletal disorganization. Although widely distributed in mammalian tissues, ILK expression is highest in the heart, and cardiac-specific ablation of ILK causes cardiomyopathy and sudden death in mice. ILK protein complexes are found in the sarcomere, which is the basic contractile unit of myocytes. A natural inactivating mutation in the kinase domain of ILK disrupts ILK protein interactions in the sarcomere, causing a contractile defect in the zebrafish heart. The relatively subtle phenotype of mutant ILK hearts, compared with ILK-ablated hearts, suggests multiple cardiac ILK functions. Cardiac-specific expression of ILK in transgenic mice induces a hypertrophic program, pointing to ILK as a proximal regulator of multiple hypertrophic signal transduction pathways. ILK protein interactions may also be important in mediating postinfarct cell migration and myocardial repair.
منابع مشابه
Integrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis
Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...
متن کاملPaxillin and Focal Adhesion Kinase (FAK) Regulate Cardiac Contractility in the Zebrafish Heart
An orchestrated interplay of adaptor and signaling proteins at mechano-sensitive sites is essential to maintain cardiac contractility and when defective leads to heart failure. We recently showed that Integrin-linked Kinase (ILK), ß-Parvin and PINCH form the IPP-complex to grant tuned Protein Kinase B (PKB) signaling in the heart. Loss of one of the IPP-complex components results in destabiliza...
متن کاملIntegrin-linked kinase, a novel component of the cardiac mechanical stretch sensor, controls contractility in the zebrafish heart.
The vertebrate heart possesses autoregulatory mechanisms enabling it first to sense and then to adapt its force of contraction to continually changing demands. The molecular components of the cardiac mechanical stretch sensor are mostly unknown but of immense medical importance, since dysfunction of this sensing machinery is suspected to be responsible for a significant proportion of human hear...
متن کاملThe Role of Nitric Oxide and Prostaglandins in the Effect of Adenosine on Contractility, Heart Rate and Coronary Blood Flow in Guinea Pig Isolated Heart
It is a well-established fact that adenosine and its receptor subtypes (A 1 and A ) are involved in changes of contractility, heart rate and coronary blood flow (CBF) under different circumstances. This study was conducted to evaluate the role of nitric oxide and prostaglandins in development of these changes. For this purpose, Nitro-L-Arginine methyl ester (L-NAME), and indomethacin as inhibit...
متن کاملIntegrin Beta-3 Gene Polymorphism and Risk for Myocardial Infarction in Premature Coronary Disease
Background: Contradictory results have been obtained regarding the role of integrin, beta 3 (ITGB3) gene polymorphisms in occurrence of myocardial infarction (MI). Objectives: We aimed to assess the association between 1565C/T polymorphism of ITGB3 gene and increased risk for acute MI in patients with premature coronary artery disease (CAD). <strong...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 100 10 شماره
صفحات -
تاریخ انتشار 2007